
LATEX News
Issue 36, November 2022 (LATEX release 2022-11-01)

Contents

Introduction 1

Auto-detecting key/value arguments 1

A note for font package developers 1
Encoding subsets for TS1 encoded fonts 1

New or improved commands 2
Better language handling for case-changing

commands 2

Code improvements 2
Support for slanted small caps in the EC fonts 2
EC sans serif at small sizes 2
Improve font series handling with incorrect

.fd files 2
Detect nested minipage environments 2
Robust commands in package options 2
Improve l3docstrip integration into docstrip . . 2
LuaTEX callback efficiency improvement 3
Rule-based ordering for LuaTEX callback

handlers 3

Bug fixes 3
Prevent TEX from losing a \smash 3
Resolve an issue with \mathchoice and

localalphabets 3
Reporting of unused global options when

using key/value processing 3

Changes to packages in the graphics category 3
Fix a \mathcolor bug 3

Changes to packages in the tools category 3
array: Correctly identify single-line m-cells . . . 3

Introduction
The 2022-11 release of LATEX is largely a consolidation
release where we made a number of minor improvements
to fix some bugs or improve one or the other interface.

The only really important functionality that was added
is described in the next section: the ability to easily
define document-level commands and environments that
accept a key/value list in one of its (usually optional)
arguments, including the ability to determine if the

argument does in fact contain such a key/value list or
just a single “classical” value.

For the “Tagged LATEX Project” this functionality is
very important because many document-level commands
will need to accept such key/value lists, for example, to
specify alternative text or overwrite default tagging if
that becomes necessary in a document.

Auto-detecting key/value arguments
To allow extension of the core LATEX syntax, ltcmd now
supports a =... modifier when grabbing arguments.
This modifier instructs LATEX that the argument should
be passed to the underlying code as a set of key/values.
If the argument does not “look like” a set of key/values,
it will be converted into a single key/value pair, with
the argument to = specifying the name of that key. For
example, the \caption command could be defined as

\DeclareDocumentCommand\caption
{s ={short-text}+O{#3} +m}
{...}

which would mean that if the optional argument does
not contain key/value data, it will be converted to a
single key/value pair with the key name short-text.

Arguments which begin with =, are always interpreted
as key/values even if they do not contain further = signs.
Any = signs enclosed within $...$ or \(...\), i.e. in
inline math mode, are ignored, meaning that only =
outside of math mode will generally cause interpretation
as key/value material.

In case the argument contains a “textual” = sign that
is mistaken as a key/value indicator you can hide it
using a brace group as you would do in other places,
e.g.,

\caption[{Use of = signs}]
{Use of = signs in optional arguments}

However, because = signs in math mode are already
ignored, this should seldom be necessary.

A note for font package developers
Encoding subsets for TS1 encoded fonts
The text companion encoding TS1 is unfortunately not
very faithfully supported in fonts that are not close
cousins to the Computer Modern fonts. It was therefore
necessary to provide the notion of “sub-encodings” on a
per font basis. These sub-encodings are declared for a

LATEX News, and the LATEX software, are brought to you by the LATEX Project Team; Copyright 2022, license LPPL.

font family with the help of a \DeclareEncodingSubset
declaration, see [5] for details.

Maintainers of font bundles that include TS1 encoded
font files should add an appropriate declaration into
the corresponding ts1family.fd file, because otherwise
the default subencoding is assumed, which is probably
disabling too many glyphs that are actually available in
the font.1 (github issue 905)

New or improved commands
Better language handling for case-changing commands
The commands \MakeUppercase, \MakeLowercase
and \MakeTitlecase now automatically detect the
locale currently in use when babel is loaded. This
allows automatic adjustment of letter mappings where
appropriate. They also accept a leading optional
argument. This accepts a key–value list of control
settings. At present, there is one key available: locale,
which can also be accessed via the alias lang. This is
intended to allow local setting of the language, which
can be done using a BCP-47 descriptor. For example,
this could be used to force Turkish case changing in
otherwise English input
\MakeUppercase[lang = tr]{Ragıp Hulûsi Özdem}

yields RAGIP HULÛSİ ÖZDEM.

Code improvements
Support for slanted small caps in the EC fonts
For some time LATEX has supported the combination
of the shapes small caps and italic/slanted. The EC
fonts contain slanted small caps fonts but using them
required the loading of an external package. Suitable
font definitions have now been added to t1cmd.fd and so
from now on
\usepackage[T1]{fontenc}
...
\textsc{\textsl{Slanted Small Caps}};
\textsc{\textit{Italic Small Caps}};
\bfseries
\textsc{\textsl{Bold Slanted Small Caps}};
\textsc{\textit{Bold Italic Small Caps}}.

will give the expected result: Slanted Small Caps;
Italic Small Caps; Bold Slanted Small Caps;
Bold Italic Small Caps.

Given that the Computer Modern fonts in T1 do not
have real italic small caps but only slanted small caps,
the latter is substituted for the former. This is why both
work in the above, but there is no difference between

1The LATEX format contains declarations for many font fami-
lies already. This was done in 2020 to quickstart the use of the
symbols in the kernel, but it is really the wrong place for such dec-
larations. Thus, for new fonts the declarations should be placed
into the corresponding .fd files.

the two (and you get a substitution warning for the
\textit\textsc shape combination). (github issue 782)

EC sans serif at small sizes
The EC (T1 encoded Computer Modern) sans serif fonts
have errors at small sizes: the medium weight is bolder
and wider than the bold extended. This makes them
unusable at these small sizes. The default .fd file has
therefore been adjusted to use a scaled down 8pt font
instead. (github issue 879)

Improve font series handling with incorrect .fd files
By convention, the font series value is supposed to
contain no m, unless you refer to the “medium” series
(which is represented by a single m). For example, one
should write c for “medium weight, condensed width”
and not mc. This was one of the many space-conserving
methods necessary in the early days of LATEX 2ε.

Some older .fd files do not obey that convention but
use mc, bm, etc., in their declarations. As a result, some
font selection scheme functionality was not working
when confronted with such .fd files. We have therefore
augmented \DeclareSymbolFont and \SetSymbolFont
to strip any surplus m from their series argument so that
they do not unnecessarily trigger font substitutions.
Regardless of this support such .fd files should get fixed
by their maintainers. (github issue 918)

Detect nested minipage environments
Nesting of minipage environments is only partially
supported in LATEX and can lead to incorrect output,
such as overfull boxes or footnotes appearing in the
wrong place; see [1, p. 106]. However, until now there
was no warning if that happened. This has been changed
and the environment now warns if you nest it in another
minipage environment that already contains footnotes.

(github issue 168)

Robust commands in package options
With the standard key-based option handler added in
the last release, or with contributed packages offering
similar features, users may expect to be able to use a
package option such as [font=\bfseries]. Previously
this failed with internal errors as the option list was
expanded via \edef. This has now been changed to use
the existing command \protected@edef so that any
LATEX robust command should be safe to pass to a key
value option. (github issue 932)

Improve l3docstrip integration into docstrip
In 2020 we merged l3docstrip.tex into docstrip.tex to
support the %<@@=⟨module⟩> syntax of expl3; see [2].
However, this support was incomplete, because it didn’t
cover docstrip lines of the form %<+...> or %<-...>. This
was never noticed until now, because usually %<*...>

–2

https://github.com/latex3/latex2e/issues/905
https://github.com/latex3/latex2e/issues/782
https://github.com/latex3/latex2e/issues/879
https://github.com/latex3/latex2e/issues/918
https://github.com/latex3/latex2e/issues/168
https://github.com/latex3/latex2e/issues/932

blocks are used. Now all lines in a .dtx file are subject
to the @@ replacement approach. (github issue 903)

LuaTEX callback efficiency improvement
The mechanism for providing the
pre/post_mlist_to_hlist_filter callbacks in
LuaTEX has been improved to make it more reusable
and to avoid overhead if these callbacks are not used.

(github issue 830)

Rule-based ordering for LuaTEX callback handlers
In LuaLATEX the callback handlers used to be called
in the order in which they were registered in, but this
was often rather fragile. It depends a lot on the load
order and any attempts to enforce a different order
required unregistering and reregistering the handlers
to be reordered. Additionally, even if some ordering
constraints where enforced that way, another package
loaded later could accidentally overwrite it.

To improve this, we now order the callback handlers
based on ordering rules similar to the hook rules.

When registering a callback which should
run before or after another callback,
luatexbase.declare_callback_rule can now be
used to record this ordering constraint. For example
luatexbase.add_to_callback
(’pre_shaping_filter’, my_handler, ’my_name’)

luatexbase.declare_callback_rule
(’pre_shaping_filter’,

’my_name’, ’before’, ’other_name’)

will ensure that my_handler will always be called before
the handler registered as other_name.

This also means that the order in which callbacks are
registered no longer implicitly defines an order. Code
which relied on this implicit order should now define the
order rules explicitly.

Bug fixes
Prevent TEX from losing a \smash
When TEX is typesetting a fraction, it will rebox
the material in either the numerator or denominator,
depending on which is wider. If the repackaged part
consists of a single box, that box gets new dimensions
and if it was built using a \smash that effect vanishes
(because a smash is nothing other than zeroing some
box dimension, which now got undone). For example, in
the line
\frac{1}{2} = \frac{1}{\smash{2^X}}

\neq \frac{100}{\smash{2^X}}

the 2 in the denominators was not always at the same
vertical position, because the second \smash was ignored
due to reboxing: 1

2 = 1
2X ̸= 100

2X

The differences are subtle but noticeable. This is now
corrected and the \smash is always honored. Thus now
you get this output: 1

2 = 1
2X ̸= 100

2X (github issue 517)

Resolve an issue with \mathchoice and localalphabets
The code for keeping a number of math alphabets
local (introduced in 2021; see [3]) used \aftergroup to
do some cleanup actions after a formula had finished.
Unfortunately, \aftergroup can’t be used inside the
arguments of the \mathchoice primitive and as a
result one got low-level errors if the freezing happened
in such a place. The implementation was therefore
revised to avoid the \aftergroup approach altogether.

(github issue 921)

Reporting of unused global options when using key/value
processing
Using the new key/value option processor did not
properly report any unused global options when it was
used in handling class options. This has now been
corrected. (github issue 938)

Changes to packages in the graphics category
Fix a \mathcolor bug
The \mathcolor command introduced in [4] needs to
scan for following sub- and superscripts, but if it did
so at the end of an alignment cell, e.g., in a array
environment, the & was evaluated too early, causing
some internal errors. This is now properly guarded for.

(github issue 901)

Changes to packages in the tools category
array: Correctly identify single-line m-cells
Cells in m-columns that contain only a single line are
supposed to behave like single-line p-cells and align at
the same baseline. To test for the condition, array used
to compare the height of the cell to the height of the
strut used for the table rows. However, the height of
that strut depends on the setting of \arraystretch and
if you made this negative (or very large) the test came
out wrong. Therefore, we now test against the height
of a normal strut to ensure that single-line cells are
correctly identified as such (unless their content is truly
very tall, in which case aligning is pointless anyway).

(github issue 766)

References
[1] Leslie Lamport. LATEX: A Document Preparation

System: User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, 2nd edition,
1994. ISBN 0-201-52983-1. Reprinted with corrections
in 1996.

–3

https://github.com/latex3/latex2e/issues/903
https://github.com/latex3/latex2e/issues/830
https://github.com/latex3/latex2e/issues/517
https://github.com/latex3/latex2e/issues/921
https://github.com/latex3/latex2e/issues/938
https://github.com/latex3/latex2e/issues/901
https://github.com/latex3/latex2e/issues/766

[2] LATEX Project Team: LATEX 2ε news 32.
https://latex-project.org/news/latex2e-news/
ltnews32.pdf

[3] LATEX Project Team: LATEX 2ε news 34.
https://latex-project.org/news/latex2e-news/
ltnews34.pdf

[4] LATEX Project Team: LATEX 2ε news 35.
https://latex-project.org/news/latex2e-news/
ltnews35.pdf

[5] LATEX Project Team: LATEX 2ε font selection.
https://latex-project.org/help/documentation/

–4

https://latex-project.org/news/latex2e-news/ltnews32.pdf
https://latex-project.org/news/latex2e-news/ltnews32.pdf
https://latex-project.org/news/latex2e-news/ltnews34.pdf
https://latex-project.org/news/latex2e-news/ltnews34.pdf
https://latex-project.org/news/latex2e-news/ltnews35.pdf
https://latex-project.org/news/latex2e-news/ltnews35.pdf
https://latex-project.org/help/documentation/

	Introduction
	Auto-detecting key/value arguments
	A note for font package developers
	Encoding subsets for TS1 encoded fonts

	New or improved commands
	Better language handling for case-changing commands

	Code improvements
	Support for slanted small caps in the EC fonts
	EC sans serif at small sizes
	Improve font series handling with incorrect .fd files
	Detect nested minipage environments
	Robust commands in package options
	Improve l3docstrip integration into docstrip
	LuaTeX callback efficiency improvement
	Rule-based ordering for LuaTeX callback handlers

	Bug fixes
	Prevent TeX from losing a \smash
	Resolve an issue with \mathchoice and localalphabets
	Reporting of unused global options when using key/value processing

	Changes to packages in the graphics category
	Fix a \mathcolor bug

	Changes to packages in the tools category
	array: Correctly identify single-line m-cells

